testbase

Week 3

Multiples, primes and factors

Name:
Class:
Date:

Time:

Marks:
22 marks

Comments:

1 Write all the numbers between 50 and 100 that are factors of 180

2 marks

2 Write the three prime numbers which multiply to make 231

1 mark
3 Circle the two prime numbers.

29
39
49
59
69

4 Put these values in order with the smallest first
5^{2}
3^{2}

smallest
3^{3} 2^{3}

largest

5 Write a cross on the numbers that are not square numbers.

6 Find two square numbers that total 45

1 mark

7 Emma thinks of two prime numbers.
She adds the two numbers together.
Her answer is 36
Write all the possible pairs of prime numbers Emma could be thinking of.

836 and 64 are both square numbers
They have a sum of 100
Find two square numbers that have a sum of 130

1 mark

9 The rule for this sequence of numbers is 'add 3 each time'.

$\begin{array}{lllllll}1 & 4 & 7 & 10 & 13 & 16 & \ldots\end{array}$

The sequence continues in the same way.
Mary says,
'No matter how far you go there will never be a multiple of 3 in the sequence'.

Is she correct?
Circle Yes or No.
Yes / No
Explain how you know.

10 Debbie has a pack of cards numbered from 1 to 20
She picks four different number cards.

Exactly three of the four numbers are multiples of 5
Exactly three of the four numbers are even numbers.
All four of the numbers add up to less than 40
Write what the numbers could be.

11
Here is a number chart.
Every third number in the chart has a circle on it.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22			

The chart continues in the same way.
Here is another row in the chart.
Draw the missing circles.

71	72	73	74	75

Will the number 1003 have a circle on it? Circle Yes or No.

Yes / No
Explain how you know.

12
Here are some number cards.

Joe picks two even numbers.
Dev picks two odd numbers.
Joe gives one of his cards to Dev.
Dev gives one of his cards to Joe.
Joe says,
'Now my cards are both square numbers'.
Dev says,
'Now my cards are both multiples of 5'.
What numbers did they each start with?

13 Any number can be written as a product of its prime factors, for example:

$$
20=2 \times 2 \times 5
$$

Write 90 as a product of its prime factors.

$$
90=
$$

\qquad

364 is a multiple of 7 but not a multiple of 3
384 is a multiple of 3 but not a multiple of 7
Find a number between 364 and 384 that is both a multiple of 7 and a multiple of 3

15
Here are three digit cards

Choose two cards each time to make the following two-digit numbers.
The first one is done for you.
an even number

an prime number

a common factor of 60 and 90

a common multiple of 5 and 13

16 This three-digit number has 2 and 7 as factors.

$$
294
$$

Write another three-digit number which has $\mathbf{2}$ and $\mathbf{7}$ as factors.

Mark schemes

1
Award TWO marks for the correct answer of 60 AND 90
Numbers may be given in either order.
If the answer is incorrect, award ONE mark for:

- both numbers correct and one or more additional factors of 180
eg 30,45, 61, 50

OR

- both numbers correct and one number which is not a factor of 180

```
eg fll, 隹,100
```


OR

- one number correct and none incorrect.
\square

23 AND 7 AND 11
Accept numbers in any order.

3 Two numbers circled as shown:

Do not award the mark if additional incorrect numbers are circled. Accept alternative unambiguous indications, eg numbers ticked, crossed or underlined.
$4 \quad 2^{3} \quad 3^{2} \quad 5^{2} \quad 3^{3}$
Accept 8, 9, 25, 27

Accept any unambiguous indication
$6 \quad 36$ AND 9
Numbers may be given in either order.

7 All four pairs of prime numbers listed, ie:

- 5 and 31

7 and 29
13 and 23
17 and 19
For $2 m$, accept all prime numbers listed in pair order, ie:

- 5, 31, 7, 29, 13, 23, 17, 19
or
Three or four correct pairs of prime numbers listed and not more than one incorrect pair of numbers

For 1m, accept all eight prime numbers listed, and no other numbers, without any indication of how the numbers are paired, eg:

- $5,7,13,17,19,23,29,31$

1
[2]

$8 \quad 49$ AND 81
 OR

121 AND 9
Numbers may be given in either order.

- 'It starts at 1 and keeps adding 3 so it misses all the multiples of 3 ',
- 'Multiples of 3 are all 1 less than the numbers'.

No mark is awarded for circling 'Yes' alone.
Do not accept vague or arbitrary explanations such as

- 'They're too big';
- 'It doesn't go far enough';
- 'It is adding 3 all the time'.

If ' $N o$ ' is circled but a correct unambiguous explanation is given then award the mark.

10

Accept the four numbers listed in any order.

Two numbers circled as shown:

7472	73	74	75

An explanation which recognises that 1003 is not a multiple of 3 , eg:

- 'Because 1003 is not divisible by 3 '
- 'Because 1003 is not a multiple of 3 '
- 'Because 1003 is not in the 3 times table'
- 'Because I divided 1003 by 3 and there was a remainder'
- 'Because 1003 + 3 has a decimal answer'
- 'Because $1+0+0+3=4$, and 4 is not a multiple of 3 '
- 'Because 1003 has a digital sum of 4 '
- 'Because 1002 is the nearest in the 3 times table'
- 'Because 1000 is not divisible by 3 '
- 'Because 999 is divisible by 3 '.

Do not award the mark if additional incorrect numbers are circled.
Accept alternative unambiguous indications, eg ticks, crosses.
No mark is awarded for circling 'No' alone.
Do not accept vague or arbitrary explanations, eg:

- 'Because 1003 ends in 3'
- 'Because 1003 is in the third column'
- 'Because if you keep going in 3s you will go past it'.

If 'Yes' is circled but a correct unambiguous explanation is given, then award the mark.

12 Award TWO marks for

Joe's even numbers may be given in either order.
AND

Dev

Dev's odd numbers may be given in either order.
If the answer is incorrect, award ONE mark for:

- three numbers correctly attributed

OR

- 9 AND 10 AND 15 AND 16 with some or all attributed to the wrong child.
$13 \quad 2 \times 3 \times 3 \times 5$
Numbers can be written in any order

Award TWO marks for the correct answer of 378
If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg:

- 366369372375378381

364371378385
OR

- Factorisation/calculator method, eg
$7 \times 3=21$
21×18
Answer need not be obtained for the award of ONE mark.

15 All three correct
15
65
or
Any two correct

16
Any 3-difit number that is a multiple of 14 , eg:

3	0	8

Any acceptable answers will be even numbers which divide by 7
Do not accept ' 0 ' in the hundreds box.
Only three digit numbers are acceptable.

