St. Edmund's Progress in Calculation Strategies

Mathematics equips pupils with a uniquely powerful set of tools to understand and change the world. Pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects as well as developing their understanding further in the real world.

At St. Edmund's, achieving depth of understanding in maths is supported by: active and collaborative learning without fear of making mistakes; using a Concrete, Pictorial, Abstract approach to develop a deeper understanding of what maths looks like: creating opportunities for children to be purposeful and 'talk maths'; building confidence to be curious about maths through challenging problem solving; allowing the students to be part of their learning journey and make independent choices about the challenges they are provide with: making choices about which mental calculation strategies are the most efficient method to use; showing respect and empathy at all times to other students when using and developing their understanding to become student teachers.

Being secure in maths when leaving primary school is about resilience and being fascinating with learning and not being afraid to make mistakes; our curriculum is designed around building growth mind-sets (Carol Dweck); to ensure students understand the importance of perseverance and taking risks.

There are 28 animal legs in all.
How many cows are there?
How many chickens are there?

[^0]| | EYFS | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Addition | Counting on in 1 s to find one more than a given number Use concrete objects to understand addition is combining
 \checkmark Regrouping to make 10 using a ten frame | Combining two parts to make a whole: part whole model.
 $\checkmark \quad$ Starting at the bigger number and counting onusing cubes.
 \checkmark Regrouping to make 10 using ten frame. | \checkmark Adding three single digits.
 \checkmark Use of base 10 to combine two numbers. | Column methodregrouping. Using place value counters (up to 3 digits). | Column methodregrouping (up to 4 digits) | Column methodregrouping. Use of place value counters for adding decimals. | \checkmark Column methodregrouping.
 \checkmark Abstract methods.
 \checkmark Place value counters to be used for adding decimal numbers. |
| Subtraction | Taking away one by counting back to find one less than a given number Use 10 frame to take amounts away from. | \checkmark Taking away ones
 \checkmark Counting back
 \checkmark Find the difference
 \checkmark Part whole model
 $\checkmark \quad$ Make 10 using the ten frame. | \checkmark Counting back
 \checkmark Find the difference
 \checkmark Part whole model
 \checkmark Make 10
 \checkmark Use of base 10 | Column method with regrouping. (up to 3 digits using place value counters) | Column method with regrouping.
 $\checkmark \quad$ (up to 4 digits) | \checkmark Column method with regrouping.
 \checkmark Abstract for whole numbers.
 \checkmark Start with place value counters for decimalswith the same amount of decimal places. | \checkmark Column method with regrouping.
 \checkmark Abstract methods.
 $\checkmark \quad$ Place value counters for decimalswith different amounts of decimal places. |
| Multiplication | \checkmark Recognising and making equal groups
 Use cubes, Numicon and other concrete resources to create equal groups and match a Numicon tile to the amount | \checkmark Recognising and making equal groups.
 \checkmark Doubling
 \checkmark Counting in multiples
 \checkmark Use cubes, Numicon and other objects in the classroom | \checkmark Arraysshowing commutative multiplication - objects and counters | \checkmark Arrays
 $\checkmark \quad 2 d \times 1 d$ using base 10 | Column multiplicationintroduced with place value counters. (2 and 3 digits multiplied by 1 digit) | Column multiplication
 \checkmark Abstract only but might need a repeat of year 4 first (up to 4 digits numbers multiplied by 1 or 2 digits) | Column multiplication
 \checkmark Abstract methods
 \checkmark (multi-digit up to 4 digits by a 2 digit number) |

Division	Sharing object into groups Use concrete representations and draw around groups of an amount and then match the numicon tile to the amount in the group	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes, counters and draw round a given amount then record the expression using symbols and numerals.	Division as grouping Division within arrayslinking to multiplication \checkmark Repeated subtraction	Division with a remainderusing lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	\checkmark Division with a remainder \checkmark Short division (up to 3 digits by 1 digitconcrete and pictorial)	\checkmark Short division $\checkmark \quad$ (up to 4 digits by a 1-digit number including remainders)	\checkmark Short division \checkmark Long division with place value counters $\checkmark \quad$ (up to 4 digits by a 2 digit number) \checkmark Children should exchange into the tenths and hundredths column too

Why concrete, pictorial and abstract?

As children become more confident at seeing mathematics and working things out in their heads they become better at problem solving and reasoning as well as calculating or working with shape and measure. Mental arithmetic skills need teaching and practice to develop efficient and effective ways of thinking and organising thoughts and ideas. We need to help children to: carry and manipulate information in their heads; visualise images and to interpret and analyse what they see; select and organise information in a systematic and logical way identifying patterns and applying logical reasoning.
To use visualisation successfully, children need practical experience, along with opportunities to talk about the equipment they are using and the images they are forming in their head. They also need to learn and use the related mathematical language. Visualisation could also involve the children making some notes or jottings to help them. These should not replace the visualisation but provide support when children can no longer hold everything in their minds. Being able to listen to description, interpret the context or task and manipulate the image can be challenging so making jottings of this kind is an important step in the development of their visualisation.
As children develop their fluency, learning may alternate between the concrete, pictorial and abstract areas in order to challenge and stretch student's knowledge and understanding. Across the school addition, subtraction, multiplication and division can be seen in many ways and the students will be encouraged to prove their understanding by using all aspects of the Concrete, Pictorial, Abstract approach throughout their Mathematics lessons as they move through the Key Stages.

Addition-

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'
Concrete
Combining two parts to make a whole (use
other resources too e.g. eggs, shells, teddy
bears etc)

Use of place value counters to add HTO +

TO, HTO + HTO etc. once the children have had practice with this, they should be able to apply it to larger numbers and the abstract

If he children are completing a word problem, draw a bar model to represent what it's asking them to do

Fluency variation, different ways to ask children to solve 21+34:

$?$	Sam saved £21 one week and $£ 34$ another. How much did he save in total? $21+34=55$. Prove it! (reasoning but the children need to be fluent in representing this)	$\begin{array}{r} 21 \\ +34 \\ - \\ 21+34= \\ = \\ =21+34 \end{array}$ What's the sum of twenty one and thirty four?	 Always use missing digit problems too:	
			Tens	Ones
21.34			\bigcirc	\bigcirc
			$\bigcirc \bigcirc \bigcirc$	$?$
			?	4

Subtraction-

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3 , the difference is four'

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (use various objects too) rather than crossing outchildren will physically remove the objects $4-3=1$	Children to draw the concrete resources they are using and cross out. Use of the bar model:	$4-3=$ \qquad $=4-3$ \square
Counting back (using number lines, bead strings or number tracks)	Children to represent what they see pictorially e.g. 6 \square ? 2	

Column method (using base 10 and having to exchange) 20-4 1) Start by partitioning 20 2) Exchange one ten for ten more ones 3) Subtract the ones, then the tens.	Represent the base 10 pictorially	It's crucial that the children understand that when they have exchanged the 10 they still have 45.45 $=30+15$
Column method (using place value counters) 234-88	Once the children have had practice with the concrete, they should be able to apply it to any subtraction. Like the other pictorial representations, children to represent the counters.	$\begin{array}{r} 234 \\ -\quad 88 \\ \hline 6 \\ \hline 427152 \\ -3271 \\ \hline 1081 \end{array}$
Subtracting multiples of tens using base 10, bead strings, place value counters and arrays. Continue to develop understanding of visually represented tens		$\begin{aligned} & 38-10= \\ & 30+10=20 \\ & 20+8=28 \end{aligned}$ Looking at how the numbers can be partitioned to subtract the multiples of ten. Counting backwards also in tens. $38,28 \ldots$

Fluency variation, different ways to ask children to solve 391-186:

Multiplication-

Key language which should be used: double times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3 $x 4$ or 3 lots of 4 Students begin to use what they know to derive multiplications.	Children to represent the practical resources in a picture e.g. $\begin{array}{lll} \mathrm{XX} & \mathrm{XX} & \mathrm{XX} \\ \mathrm{XX} & \mathrm{XX} & \mathrm{XX} \end{array}$ Use of a bar model for a more structured method How many apples are there altogether?	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \\ & 2 \times 4=8 \\ & 4+4=8 \\ & 3+3+3=9 \\ & 3 \times 3=9 \end{aligned}$
Use number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g:	Abstract number line $3 \times 4=12$

Fluency variation, different ways to ask children to solve 6×23 :

23	23	23	23	23	23	

$?$
With the counters, prove that 6 x $23=138$

Why is $6 \times 23=32 \times 6$?

There are three equal parts. Each part has a value of three. What is the whole?

Tom saved $23 p$ three days a week. How much did he save in 2 weeks? lengths, 6 times a week. How many lengths did she swim in one week?

Find the product of 6 and 23
$6 \times 23=$
--- $=6 \times 23$

What's the calculation? What's the answer?

100s	10s	1s
	88 88 88 88 8	

What multiplication and division equations can you write for each bar model? Prove that the equations are correct using......

Division-

Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	There are 10 sweets. Ring groups of 2 . There are \qquad groups of 2. This can also be done in a bar so all 4 operations have a similar structure:	$10 \div 2=5$ $6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Abstract number line

Short division using place value counters to group. $615 \div 5$	Represent the place value counters pictorially. $100 \mathrm{~s} / 10 \mathrm{~s}$	Children to the calculation using the short division scaffold.
100s 10 s 1s		123
		$5 \longdiv { 6 ^ { \prime } 1 ^ { 1 } 5 }$
1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?		

[^0]: Calcula vuıdance: Yearly Overview

